Geometric Whitney problem and inverse problems

Matti Lassas in collaboration with Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev Hariharan Narayanan

Finnish Centre of Excellence in Inverse Modelling and Imaging 2018-2025

UNIVERSITY OF HELSINKI

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

-

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

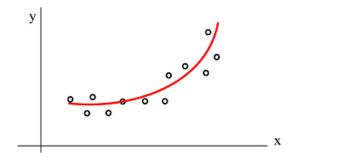
ション ふゆ く 山 マ チャット しょうくしゃ

Whitney problem with errors

Let $K \subset \mathbb{R}^n$ be an arbitrary set, $h : K \to \mathbb{R}$, $m \in \mathbb{Z}_+$, and $\varepsilon > 0$. Does there exists a function $F \in C^m(\mathbb{R}^n)$ such that

$$\sup_{x\in K}|F(x)-h(x)|\leq \varepsilon ?$$

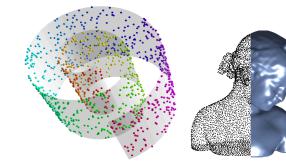
If such extension F exists, what is its optimal C^m -norm?



Problem A: Construction of a surface in \mathbb{R}^d from a point cloud.

Assume that we are given a set $X \subset \mathbb{R}^d$ and n < d. When one can construct a smooth *n*-dimensional surface $M \subset \mathbb{R}^d$ that approximates X?

How can the surface M can be constructed when X is given?



・ロト ・ 日 ・ モート ・ 田 ・ うへで

Figures by Matlab and M. Rouhani.

Problem B: Construction of a manifold from a discrete metric space.

Let (X, d_X) be a metric space. We ask when there exists a Riemannian manifold (M, g) such that

- ▶ the curvature and injectivity radius of *M* are bounded, and
- X approximates well M in the Gromov-Hausdorff topology. How can the manifold (M, g) be constructed when X is given?

Unsolved extension problems

In the above problems a neighbourhood of the data points "covers" the whole manifold M (there are no holes).

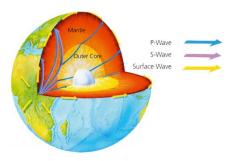
The following extension problem for metric space is unsolved: Let (X, d_X) be a metric space. Is there a Riemannian manifold (M, g) such that X can be embedded isometricly in M?

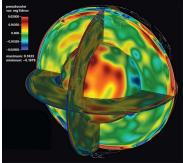
A special case is the boundary rigidity problem: Let ∂M be the boundary of a compact manifold and $f: \partial M \times \partial M \to \mathbb{R}$. When we can construct a Riemannian metric g on M such that

$$\operatorname{dist}_{(M,g)}(y_1, y_2) = f(y_1, y_2) \quad \text{for all } y_1, y_2 \in \partial M?$$

ション ふゆ く 山 マ チャット しょうくしゃ

Example: Imaging of the interior of the Earth





Let $M \subset \mathbb{R}^3$ and

Fig. by Bozdag and Pugmire,

 $d_g(x, y) =$ travel time of waves from x to y, $x, y \in M$.

Inverse problem: Can we determine the metric g in M when we know $d_g(z_1, z_2)$ for $z_1, z_2 \in \partial M$, that is, the travel times of the earthquakes between the points on the surface of the Earth? When $g = c(x)^{-2}\delta_{jk}$ and c(x) is close to 1, these data determine g uniquely (Burago-Ivanov 2010). Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example: Manifold learning from point cloud data

Consider a data set $\mathcal{X} = \{x_j\}_{j=1}^N \subset \mathbb{R}^d$. The ISOMAP face data set contains N = 2370 images of faces with d = 2914 pixels.

Question: Define $d_{\mathcal{X}}(x_j, x_k) = |x_j - x_k|_{\mathbb{R}^d}$ using the Euclidean distance. Can we find a submanifold of \mathbb{R}^d that approximates \mathcal{X} ?

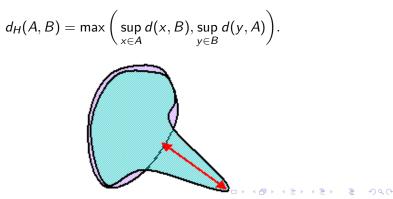
Distance of two subsets

For a metric space Y and $A \subset Y$, the ε -neighborhood $U_{\varepsilon}(A)$ of A is

$$U_{\varepsilon}(A) = \{y \in Y; d(y, A) < \varepsilon\}, \quad \varepsilon > 0.$$

We say that A is ε -dense in Y if $U_{\varepsilon}(A) = Y$.

For a metric space Y and sets $A, B \subset Y$, the Hausdorff distance between A and B in Y is

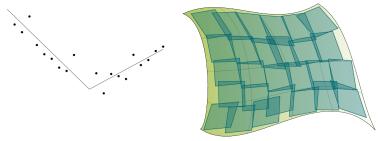


Let $E = \mathbb{R}^d$ and $B_r^E(x)$ be the ball in E with center x and radius r.

Definition

Let $X \subset E$, $n \in \mathbb{Z}_+$, and $r, \delta > 0$. We say that X is δ -close to *n*-flats at scale *r* if for any $x \in X$, there exists an *n*-dimensional affine space $A_x \subset E$ through x such that

$$d_H\left(X\cap B_r^E(x), A_x\cap B_r^E(x)\right)\leq \delta.$$



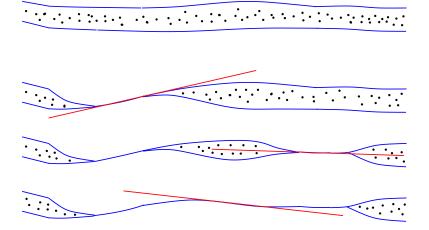
Note: A bounded smooth *n*-surface in \mathbb{R}^d is (Cr^2) -close to *n*-flats in scale *r*.

Surface interpolation

Theorem Let *E* be a separable Hilbert space, $n \in \mathbb{Z}_+$, r > 0, and $\delta < \delta_0(r, n)$. Suppose that $X \subset E$ is δ -close to n-flats at scale *r*. Then there exists a closed (or complete) n-dimensional smooth submanifold $M \subset E$ such that:

- 1. $d_H(X, M) \leq 5\delta$.
- 2. The second fundamental form of M at every point is bounded by $C_n \delta r^{-2}$.
- 3. The normal injectivity radius of M is at least r/3.

In particular, if $\delta < Cr^2$, the surface *M* has bounded curvature.



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Algorithm SurfaceInterpolation: We consider the case r = 1 and assume that $X \subset E = \mathbb{R}^d$ is finite. We suppose that X is δ -close to *n*-flats at scale *r*. We implement the following steps:

- 1. Construct a maximal $\frac{1}{100}$ -separated set $X_0 = \{q_i\}_{i=1}^k \subset X$.
- 2. For every point $q_i \in X_0$, let $A_i \subset E$ be an affine subspace that approximates $X \cap B_1(q_i)$ near q_i . Let $P_i : E \to E$ be orthogonal projectors onto A_i .

3. Let
$$\psi \in C_0^{\infty}([-\frac{1}{2},\frac{1}{2}])$$
 be 1 in $[0,\frac{1}{3}]$ and $\varphi_i: E \to E$ be

$$\varphi_i(x) = \mu_i(x)P_i(x) + (1 - \mu_i(x))x, \quad \mu_i(x) = \psi(|x - q_i|).$$

Define $f: E \to E$ by

$$f = \varphi_k \circ \varphi_{k-1} \circ \ldots \circ \varphi_1.$$

4. Construct the image $M = f(U_{\delta}(X))$. The output is the *n*-dimensional surface $M \subset E$. Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Some earlier methods for manifold learning Let $\{x_j\}_{i=1}^J \subset \mathbb{R}^d$ be points on submanifold $M \subset \mathbb{R}^d$, d > n.

► 'Multi Dimensional Scaling' (MDS) finds an embedding of data points into ℝ^m, n < m < d by minimising a cost function</p>

$$\min_{y_1,...,y_J \in \mathbb{R}^m} \sum_{j,k=1}^J \left| \|y_j - y_k\|_{\mathbb{R}^m} - d_{jk} \right|^2, \quad d_{jk} = \|x_j - x_k\|_{\mathbb{R}^d}$$

'Isomap' makes a graph of the K nearest neighbours and computes graph distances d^G_{jk} that approximate distances d_M(x_j, x_k) along the surface. Then MDS is applied. Note that if there is F : M → ℝ^m such that |F(x) - F(x')| = d_M(x, x'), then the curvature of M is zero.

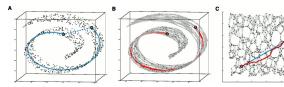


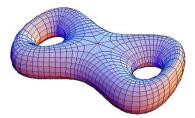
Figure by Tenenbaum et al., Science 2000

Construction of a manifold from discrete data.

Let $(\mathcal{X}, d_{\mathcal{X}})$ be a (discrete) metric space. We want to approximate it by a Riemannian manifold (M^*, g^*) so that

- $(\mathcal{X}, d_{\mathcal{X}})$ and (M^*, d_{g^*}) are almost isometric,
- ▶ the curvature and the injectivity radius of *M*^{*} are bounded.

Note that \mathcal{X} is an "abstract metric space" and not a set of points in \mathbb{R}^d , and we want to learn the intrinsic metric of the manifold.



(日) (伊) (日) (日) (日) (0) (0)

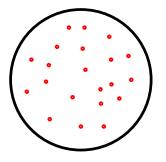
Distance of two metric spaces

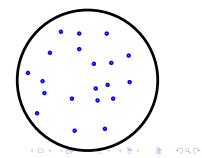
Let (X, d_X) and (Y, d_Y) be (compact) metric spaces. Their Gromov-Hausdorff distance is

 $d_{_{GH}}(X,Y) = \inf_{Z} \{ d_{H}(X,Y); (Z,d_{Z}) \text{ is a metric space, } X \subset Z, Y \subset Z \}.$

More practical definition: $d_{GH}(X, Y)$ is the infimum of all $\varepsilon > 0$ for which there are ε -dense sequences $(x_j)_{j=1}^J \subset X$ and $(y_j)_{j=1}^J \subset Y$ such that

 $|d_X(x_j, x_k) - d_Y(y_j, y_k)| \le \varepsilon$, for all j, k = 1, 2..., J.





Example 1: Non-Euclidean metric in data sets

Consider a data set $\mathcal{X} = \{x_j\}_{j=1}^N \subset \mathbb{R}^d$. The ISOMAP face data set contains N = 2370 images of faces with d = 2914 pixels.

Question: Define $d_{\mathcal{X}}(x_j, x_k)$ using Wasserstein distance related to optimal transport. Does $(\mathcal{X}, d_{\mathcal{X}})$ approximate a manifold and how this manifold can be constructed?

(日) (伊) (日) (日) (日) (0) (0)

Example 2: Travel time distances of points

Surface waves produced by earthquakes travel near the boundary of the Earth. The observations of several earthquakes give information on travel times $d_T(x, y)$ between the points $x, y \in \mathbb{S}^2$.

Question: Can one determine the Riemannian metric associated to surface waves from the travel times with measurement errors?

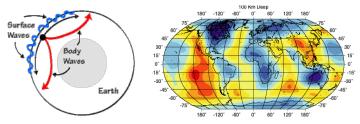
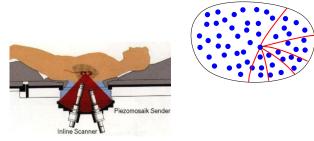


Figure by Su-Woodward-Dziewonski, 1994

Example 3: An inverse problem for a manifold

Consider a physical $D \subset \mathbb{R}^3$ with an unknown wave speed c(x). We can use boundary measurements to construct the distances $d_g(x_j, x_k)$ in a discrete set $X = \{x_j \in M : j = 1, 2, ..., N\}$ (Belishev-Kurylev 1992, Bingham-Kurylev-L.-Siltanen 2008).



The solution for Problem B gives a construction of a smooth Riemannian manifold from (X, d_X) . This Riemannian metric is close to the travel time metric g determined by c(x).

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Ideas of the proofs and applications in geometry
- Learning a manifold from distances with large random noise

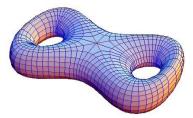
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Construction of a manifold from discrete data.

Let $(\mathcal{X}, d_{\mathcal{X}})$ be a (discrete) metric space. We aim to answer the question if there exists a Riemannian manifold (M^*, g^*) that approximates \mathcal{X} so that

- $d_{GH}((\mathcal{X}, d_{\mathcal{X}}), (M^*, d_{g^*})) < \varepsilon$,
- the curvature and the injectivity radius of M^* are bounded.

Note that \mathcal{X} is an "abstract metric space" and not a set of points in \mathbb{R}^d , and we want to learn the intrinsic metric of the manifold.



A local condition

Let $B_r^X(x)$ denote the ball of the metric space X and $B_r^{\mathbb{R}^n}(0)$ denote the ball of \mathbb{R}^n .

Definition

Let X be a metric space, $r > \delta > 0$, $n \in \mathbb{Z}_+$. We say that X is δ -close to \mathbb{R}^n at scale r if, for any $x \in X$,

$$d_{GH}ig(B^X_r(x)\,,\,B^{\mathbb{R}^n}_r(0)ig)<\delta.$$



Note: A compact smooth *n*-manifold is (Cr^3) -close \mathbb{R}^n at scale *r*.

(ロ) (型) (E) (E) (E) (O)

A global condition

Definition

Let X = (X, d) be a metric space and $\delta > 0$. A δ -chain in X is a sequence $x_1, x_2, \ldots, x_N \in X$ such that $d(x_i, x_{i+1}) < \delta$ for all j.

A sequence $x_1, x_2, \ldots, x_N \in X$ is said to be δ -straight if

 $d(x_i, x_j) + d(x_j, x_k) < d(x_i, x_k) + \delta \quad \text{for all } 1 \leq i < j < k \leq N.$

We say that X is δ -intrinsic if for every pair of points $x, y \in X$ there is a δ -straight δ -chain x_1, \ldots, x_N with $x_1 = x$ and $x_N = y$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Manifold learning

Theorem

Let X be a metric space with a bounded diameter, $n \in \mathbb{Z}_+$, r > 0, and $0 < \delta < \delta_0(r, n)$. Suppose that X is δ -intrinsic and δ -close to \mathbb{R}^n at scale r. Then there exists a compact n-dimensional Riemannian manifold M such that

1. X and M satisfy

$$d_{GH}(X,M) < C\delta r^{-1} diam(X).$$

2. The sectional curvature Sec(M) of M satisfies

$$|\operatorname{Sec}(M)| \leq C\delta r^{-3}.$$

(日) (伊) (日) (日) (日) (0) (0)

3. The injectivity radius of M is bounded below by r/2.

In particular, if $\delta < Cr^3$, the constructed manifold M has bounded curvature.

Manifold learning

Theorem

Let X be a metric space with a bounded diameter, $n \in \mathbb{Z}_+$, r > 0, and $0 < \delta < \delta_0(r, n)$. Suppose that X is δ -intrinsic and δ -close to \mathbb{R}^n at scale r. Then there exists a compact n-dimensional Riemannian manifold M such that

1. X and M satisfy

$$d_{GH}(X,M) < C\delta r^{-1} diam(X).$$

2. The sectional curvature Sec(M) of M satisfies

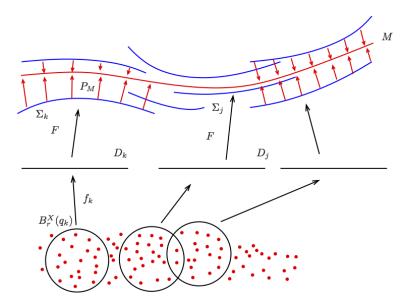
$$|\operatorname{Sec}(M)| \leq C\delta r^{-3}.$$

(日) (伊) (日) (日) (日) (0) (0)

3. The injectivity radius of M is bounded below by r/2.

In particular, if $\delta < Cr^3$, the constructed manifold M has bounded curvature.

Rough idea of the proof of manifold interpolation



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Assume that we are given a finite metric space (X, d). We do the following steps:

- 1. Select a maximal $\frac{r}{100}$ -separated set $X_0 = \{q_i\}_{i=1}^J \subset X$.
- 2. Choose disjoint balls $D_i = B_r(p_i) \subset \mathbb{R}^n$ for i = 1, 2, ..., J and construct a δ -isometry $f_i : B_r^X(q_i) \to D_i$.
- 3. For all $q_i, q_j \in X_0$ such that $d(q_i, q_j) < r$, find affine transition maps $A_{ij} \colon \mathbb{R}^n \to \mathbb{R}^n$, such that

 $|A_{ij}(f_i(x)) - f_j(x)| < C\delta$, for $x \in B_r^X(q_i) \cap B_r^X(q_j)$.

ション ふゆ アメリア メリア しょうくしゃ

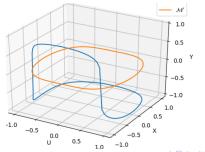
When i = j, we define $A_{jj} = Id$.

4. Let $\Phi \in C_0^{\infty}(\mathbb{R}^n)$ be 1 near zero, and $\Omega = \bigcup_i D_i$. Define smooth indicator functions $\psi_{ij}(x) = \Phi(A_{ij}(x) - p_j)$. Define a map $F_j: \Omega \to \mathbb{R}^{n+1}$ as follows: For $x \in D_i = B_r(p_i)$, put

$$F_j(x) = \begin{cases} \left(\begin{array}{cc} \psi_{ij}(x) \cdot (A_{ij}(x) - p_j) \\ 0, \end{array} \right), & \text{if } d(q_i, q_j) < r, \\ 0, & \text{otherwise.} \end{cases}$$

5. Denote $E = \mathbb{R}^m$, m = (n+1)J and define

 $F: \Omega \to E, \quad F(x) = (F_j(x))_{j=1}^J.$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♥ ���

- **6**. Construct the local patches $\Sigma_i = F(D_i) \subset E$.
- 7. Apply algorithm *SurfaceInterpolation* for the set $\bigcup_i \Sigma_i$ to construct a surface $M \subset E$.
- 8. Let P_M be the normal projection on M.
- 9. Construct a metric tensor g on M by pushing forward the Euclidean metric g^e on D_i in the maps $P_M \circ F$ and computing a weighted average of the obtained metric tensors.

うして ふゆう ふほう ふほう うらつ

The output is the surface $M \subset E$ and the metric g on it.

Next we consider applications of the above theorem in reconstruction of an unknown manifold.

Theorem (Fefferman, Ivanov, Kurylev, L., Narayanan 2015) Let $0 < \delta < c_1(n, K)$ and M be a compact n-dimensional manifold with $|\operatorname{Sec}(M)| \leq K$ and $\operatorname{inj}(M) > 2(\delta/K)^{1/3}$. Let $\mathcal{X} = \{x_j\}_{j=1}^N$ be δ -dense in M and $\widetilde{d} : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_+ \cup \{0\}$ satisfy

$$|\widetilde{d}(x,y) - d_M(x,y)| \le \delta, \quad x,y \in \mathcal{X}.$$

Given the values $\tilde{d}(x_j, x_k)$, j, k = 1, ..., N, one can construct a compact n-dimensional Riemannian manifold (M^*, g^*) such that:

1. There is a diffeomorphism $F: M^* \to M$ satisfying

$$\frac{1}{L} \leq \frac{d_M(F(x), F(y))}{d_{M^*}(x, y)} \leq L, \quad \text{for } x, y \in M^*, \ L = 1 + C_n K^{1/3} \delta^{2/3}$$

2.
$$|\operatorname{Sec}(M^*)| \leq C_n K$$
.
3. $\operatorname{inj}(M^*) \geq \min\{(C_n K)^{-1/2}, (1 - C_n K^{1/3} \delta^{2/3}) \operatorname{inj}(M)\}$.

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

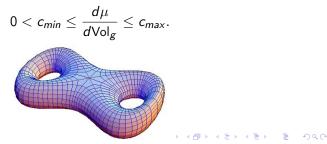
Random sample points and random errors

Manifolds with bounded geometry:

Let $n \ge 2$ be an integer, K > 0, D > 0, $i_0 > 0$. Let (M, g) be a compact Riemannian manifold of dimension n such that

$$\begin{split} &i) \|\operatorname{Sec}_{M}\|_{L^{\infty}(M)} \leq K, \qquad (1) \\ ⅈ) \operatorname{diam} (M) \leq D, \\ &iii) \operatorname{inj} (M) \geq i_{0}, \end{split}$$

We consider measurements in randomly sampled points: Let X_j , j = 1, 2, ..., N be independently samples from probability distribution μ on M satisfying



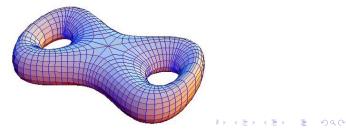
Definition

Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

In particular, Gaussian noise satisfies these conditions. We assume that all random variables η_{jk} and X_j are independent. We consider noisy measurements

$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



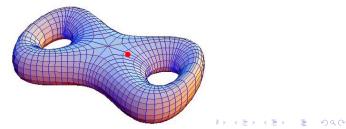
Definition

Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

In particular, Gaussian noise satisfies these conditions. We assume that all random variables η_{jk} and X_j are independent. We consider noisy measurements

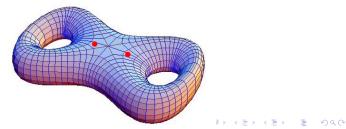
$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

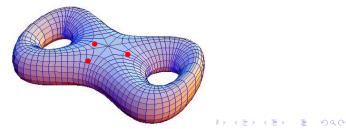
$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

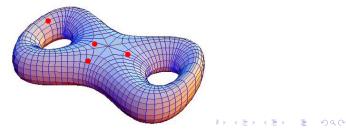
$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

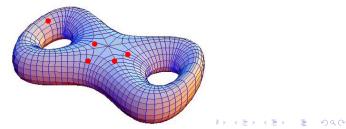
$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



Let X_j , j = 1, 2, ..., N be independent, identically distributed (i.i.d.) random variables having distribution μ . Let $\sigma > 0$, $\beta > 1$ and η_{jk} be i.i.d. random variables satisfying

$$\mathbb{E}\eta_{jk} = 0, \quad \mathbb{E}(\eta_{jk}^2) = \sigma^2, \quad \mathbb{E}e^{|\eta_{jk}|} = \beta.$$

$$D_{jk} = d_M(X_j, X_k) + \eta_{jk}.$$



Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 3$, $D, K, i_0, c_{min}, c_{max}, \sigma, \beta > 0$ be given. Then there are δ_0, C_0 and C_1 such that the following holds: Let $\delta \in (0, \delta_0)$, $\theta \in (0, \frac{1}{2})$ and (M, g) be a compact manifold satisfying bounds (1). Then with a probability $1 - \theta$, σ^2 and the noisy distances $D_{jk} = d_M(X_j, X_k) + \eta_{jk}$, $j, k \leq N$ of N randomly chosen points, where

$$N \geq C_0 rac{1}{\delta^{3n}} igg(\log(rac{1}{ heta}) + \log(rac{1}{\delta}) igg),$$

determine a Riemannian manifold (M^*, g^*) such that

1. There is a diffeomorphism $F: M^* \to M$ satisfying

$$\frac{1}{L} \leq \frac{d_M(F(x), F(y))}{d_{M^*}(x, y)} \leq L, \quad \text{for all } x, y \in M^*,$$

where $L = 1 + C_1 \delta$.

2. The sectional curvature Sec_{M^*} of M^* satisfies $|Sec_{M^*}| \leq C_1 K$.

- ロト - 4 目 - 4 目 - 4 目 - 9 9 9

3. The injectivity radius $inj(M^*)$ of M^* is close to inj(M).

Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 3$, $D, K, i_0, c_{min}, c_{max}, \sigma, \beta > 0$ be given. Then there are δ_0, C_0 and C_1 such that the following holds: Let $\delta \in (0, \delta_0)$, $\theta \in (0, \frac{1}{2})$ and (M, g) be a compact manifold satisfying bounds (1). Then with a probability $1 - \theta$, σ^2 and the noisy distances $D_{jk} = d_M(X_j, X_k) + \eta_{jk}$, $j, k \leq N$ of N randomly chosen points, where

$$N \geq C_0 rac{1}{\delta^{3n}} igg(\log(rac{1}{ heta}) + \log(rac{1}{\delta}) igg),$$

determine a Riemannian manifold (M^*, g^*) such that

1. There is a diffeomorphism $F: M^* \to M$ satisfying

$$\frac{1}{L} \leq \frac{d_M(F(x), F(y))}{d_{M^*}(x, y)} \leq L, \quad \text{for all } x, y \in M^*,$$

where $L = 1 + C_1 \delta$.

2. The sectional curvature Sec_{M^*} of M^* satisfies $|Sec_{M^*}| \leq C_1 K$.

- ロト - 4 目 - 4 目 - 4 目 - 9 9 9

3. The injectivity radius $inj(M^*)$ of M^* is close to inj(M).

For $z \in M$, let $r_z : M \to \mathbb{R}$ be the distance function from z,

$$r_z(x) = d_M(z, x), \quad x \in M.$$

For $y, z \in M$, we consider the "rough distance function"

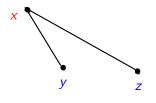
$$\kappa(y,z) = \|r_y - r_z\|_{L^2(M)}^2 = \int_M |d_M(y,x) - d_M(z,x)|^2 d\mu(x).$$

Lemma

There is a constant $c_0 \in (0,1)$ such that

$$c_0^2 d_M(y,z)^2 \leq \|r_y - r_z\|_{L^2(M,d\mu)}^2 \leq d_M(y,z)^2, \quad y,z \in M.$$

That is, the map $R : z \mapsto r_z$ is a bi-Lipschitz embedding $R : M \to R(M) \subset L^2(M)$.



Lemma (Hoeffding's inequality)

Let Z_1, \ldots, Z_N be N independent, identically distributed copies of the random variable Z whose range is [0, 1]. Then, for $\varepsilon > 0$, we have

$$\mathbb{P}\left[\left|\frac{1}{N}(\sum_{j=1}^{N} Z_{j}) - \mathbb{E}Z\right| \leq \varepsilon\right] \geq 1 - 2\exp(-2N\varepsilon^{2}).$$

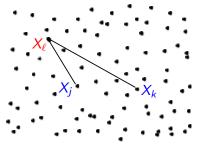
・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

We consider three sets $S_1, S_2, S_3 \subset \{X_j\}$, where $N_i = \#S_i$ satisfy $N_1 > N_2 > N_3$. We call $S_1 = \{X_1, \ldots, X_{N_1}\}$ the densest net, S_2 the medium dense net and S_3 the coarse net.

We give an algorithm to construct (M^*, g^*) from noisy data. Step 1: For $X_i, X_k \in S_2$ are in the "medium dense net", we compute

$$\kappa_{app}(X_j, X_k) = rac{1}{N_1} \sum_{\ell=1}^{N_1} |D_{j\ell} - D_{k\ell}|^2 - 2\sigma^2,$$

where we take a sum over the "densest net" S_1 .



Denote $\kappa(X_j, X_k) = ||\mathbf{r}_{X_j} - \mathbf{r}_{X_k}||_{L^2(M)}^2$. A simple calculation shows

$$\mathbb{E}\left(|D_{j\ell} - D_{k\ell}|^2 \mid X_j, X_k\right) = \|r_{X_j} - r_{X_k}\|_{L^2(M)}^2 + 2\sigma^2.$$

We recall that for $X_j, X_k \in S_2$,

$$\kappa_{app}(X_j, X_k) = rac{1}{N_1} \sum_{\ell=1}^{N_1} |D_{j\ell} - D_{k\ell}|^2 - 2\sigma^2$$

Thus Hoeffding's inequality yields the following:

Lemma

Let L > D + 1 and $\varepsilon > 0$. If $|\eta_{jk}| < L$ almost surely, then

$$\mathbb{P}\left[\left|\kappa_{app}(X_j, X_k) - \kappa(X_j, X_k)\right| \leq \varepsilon\right] \geq 1 - 2\exp(-\frac{1}{8}N_1L^{-4}\varepsilon^2)$$

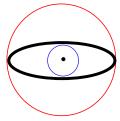
Recall that function $\kappa(y, z) = ||r_y - r_z||^2_{L^2(M)} \approx \kappa_{app}(y, z)$ is a rough distance function:

$$c_0^2 d_M(y,z)^2 \leq \kappa(y,z) \leq d_M(y,z)^2.$$

Let $W(y, \rho)$ and $W_{app}(y, \rho)$ be the sets

$$egin{array}{rcl} W(y,
ho) &=& \{z\in M: \ \kappa(y,z)<
ho^2\}, \ W_{app}(y,
ho) &=& \{z\in M: \ \kappa_{app}(y,z)<
ho^2\}. \end{array}$$

We have $B_M(y, \frac{1}{c_0}\rho) \subset W(y, \rho) \subset B_M(y, \rho)$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For $y_1, y_2 \in M$, we define the averaged distances

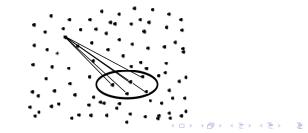
$$d_{\rho}(y_1, y_2) = rac{1}{\mu(W(y_1, \rho))} \int_{W(y_1, \rho)} d_M(z, y_2) \, d\mu(z).$$

Step 2: For $X_j, X_{j'} \in S_3$, where S_3 is the coarse net, compute

$$d_{
ho}^{app}(X_j,X_{j'})=rac{1}{\#(S_2\cap W_{app}(X_j,
ho))}\sum_{X_k\in S_2\cap W_{app}(X_j,
ho)}D_{kj'}.$$

There is $\delta_1 = \delta_1(\rho, \theta)$ such that

 $\mathbb{P}[\forall X_j, X_{j'} \in S_3: |d_{\rho}^{app}(X_j, X_{j'}) - d_M(X_j, X_{j'})| < \delta_1] \ge 1 - \theta.$



Summarizing, for points $S_3 = \{y_1, y_2, \dots, y_{N_3}\}$ we find $d_{\rho}^{app}(y_j, y_{j'})$ such that

$$|d_
ho^{\mathsf{app}}(y_j,y_{j'})-d_{\mathcal{M}}(y_j,y_{j'})|<\delta_1$$

with a large probability.

Step 3: Using the deterministic results with small errors we find a smooth manifold (M^*, g^*) using the net S_3 and the approximate distance $d_{\rho}^{app}(y_1, y_2)$ of $y_1, y_2 \in S_3$.

ション ふゆ アメリア メリア しょうくの

Generalization with missing data

Recall that $D_{jk} = d_M(X_j, X_k) + \eta_{jk}$. We can assume that we are given

$$D_{jk}^{(ext{partial data})} = \left\{egin{array}{cc} D_{jk} & ext{if } Y_{jk} = 1, \ ext{`missing'} & ext{if } Y_{jk} = 0, \end{array}
ight.$$

where $Y_{jk} \in \{0, 1\}$ are independent random variables,

$$\mathbb{P}(Y_{jk}=1 \mid X_j, X_k) = \Phi(X_j, X_k)$$

and $\Phi: M \times M \to \mathbb{R}$ is some (unknown) function such that there is a smooth non-increasing function $h: [0, \infty) \to [0, 1]$ so that

ション ふゆ アメリア メリア しょうくの

$$c_1 h(d_M(x,y)) \leq \Phi(x,y) \leq c_2 h(d_M(x,y)).$$

Thank you for your attention!

(ロ)、(型)、(E)、(E)、 E のQで