Geometric Whitney problem and inverse problems

Matti Lassas
in collaboration with
Charles Fefferman, Sergei Ivanov, Yaroslav Kurylev
Hariharan Narayanan

Finnish Centre of Excellence in Inverse Modelling and Imaging

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

Whitney problem with errors

Let $K \subset \mathbb{R}^{n}$ be an arbitrary set, $h: K \rightarrow \mathbb{R}, m \in \mathbb{Z}_{+}$, and $\varepsilon>0$. Does there exists a function $F \in C^{m}\left(\mathbb{R}^{n}\right)$ such that

$$
\sup _{x \in K}|F(x)-h(x)| \leq \varepsilon ?
$$

If such extension F exists, what is its optimal C^{m}-norm?

Problem A: Construction of a surface in \mathbb{R}^{d} from a point cloud.

Assume that we are given a set $X \subset \mathbb{R}^{d}$ and $n<d$.
When one can construct a smooth n-dimensional surface $M \subset \mathbb{R}^{d}$ that approximates X ?
How can the surface M can be constructed when X is given?

Figures by Matlab and M. Rouhani.

Problem B: Construction of a manifold from a

 discrete metric space.Let $\left(X, d_{X}\right)$ be a metric space. We ask when there exists a Riemannian manifold (M, g) such that

- the curvature and injectivity radius of M are bounded, and
- X approximates well M in the Gromov-Hausdorff topology. How can the manifold (M, g) be constructed when X is given?

Unsolved extension problems

In the above problems a neighbourhood of the data points "covers" the whole manifold M (there are no holes).

The following extension problem for metric space is unsolved: Let $\left(X, d_{X}\right)$ be a metric space. Is there a Riemannian manifold (M, g) such that X can be embedded isometricly in M ?
A special case is the boundary rigidity problem:
Let ∂M be the boundary of a compact manifold and $f: \partial M \times \partial M \rightarrow \mathbb{R}$. When we can construct a Riemannian metric g on M such that

$$
\operatorname{dist}_{(M, g)}\left(y_{1}, y_{2}\right)=f\left(y_{1}, y_{2}\right) \quad \text { for all } y_{1}, y_{2} \in \partial M ?
$$

Example: Imaging of the interior of the Earth

Let $M \subset \mathbb{R}^{3}$ and

Fig. by Bozdag and Pugmire,

$$
d_{g}(x, y)=\text { travel time of waves from } x \text { to } y, \quad x, y \in M
$$

Inverse problem: Can we determine the metric g in M when we know $d_{g}\left(z_{1}, z_{2}\right)$ for $z_{1}, z_{2} \in \partial M$, that is, the travel times of the earthquakes between the points on the surface of the Earth? When $g=c(x)^{-2} \delta_{j k}$ and $c(x)$ is close to 1 , these data determine g uniquely (Burago-Ivanov 2010).

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

Example: Manifold learning from point cloud data

Consider a data set $\mathcal{X}=\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$.
The ISOMAP face data set contains $N=2370$ images of faces with $d=2914$ pixels.

Question: Define $d_{\mathcal{X}}\left(x_{j}, x_{k}\right)=\left|x_{j}-x_{k}\right|_{\mathbb{R}^{d}}$ using the Euclidean distance. Can we find a submanifold of \mathbb{R}^{d} that approximates \mathcal{X} ?

Distance of two subsets

For a metric space Y and $A \subset Y$, the ε-neighborhood $U_{\varepsilon}(A)$ of A is

$$
U_{\varepsilon}(A)=\{y \in Y ; d(y, A)<\varepsilon\}, \quad \varepsilon>0
$$

We say that A is ε-dense in Y if $U_{\varepsilon}(A)=Y$.
For a metric space Y and sets $A, B \subset Y$, the Hausdorff distance between A and B in Y is

$$
d_{H}(A, B)=\max \left(\sup _{x \in A} d(x, B), \sup _{y \in B} d(y, A)\right)
$$

Let $E=\mathbb{R}^{d}$ and $B_{r}^{E}(x)$ be the ball in E with center x and radius r.

Definition

Let $X \subset E, n \in \mathbb{Z}_{+}$, and $r, \delta>0$.
We say that X is δ-close to n-flats at scale r if for any $x \in X$, there exists an n-dimensional affine space $A_{x} \subset E$ through x such that

$$
d_{H}\left(X \cap B_{r}^{E}(x), A_{x} \cap B_{r}^{E}(x)\right) \leq \delta
$$

Note: A bounded smooth n-surface in \mathbb{R}^{d} is $\left(\mathrm{Cr}^{2}\right)$-close to n-flats in scale r.

Surface interpolation

Theorem

Let E be a separable Hilbert space, $n \in \mathbb{Z}_{+}, r>0$, and $\delta<\delta_{0}(r, n)$.
Suppose that $X \subset E$ is δ-close to n-flats at scale r. Then there exists a closed (or complete) n-dimensional smooth submanifold $M \subset E$ such that:

1. $d_{H}(X, M) \leq 5 \delta$.
2. The second fundamental form of M at every point is bounded by $C_{n} \delta r^{-2}$.
3. The normal injectivity radius of M is at least $r / 3$.

In particular, if $\delta<C r^{2}$, the surface M has bounded curvature.

Algorithm Surfacelnterpolation: We consider the case $r=1$ and assume that $X \subset E=\mathbb{R}^{d}$ is finite. We suppose that X is δ-close to n-flats at scale r. We implement the following steps:

1. Construct a maximal $\frac{1}{100}$-separated set $X_{0}=\left\{q_{i}\right\}_{i=1}^{k} \subset X$.
2. For every point $q_{i} \in X_{0}$, let $A_{i} \subset E$ be an affine subspace that approximates $X \cap B_{1}\left(q_{i}\right)$ near q_{i}. Let $P_{i}: E \rightarrow E$ be orthogonal projectors onto A_{i}.
3. Let $\psi \in C_{0}^{\infty}\left(\left[-\frac{1}{2}, \frac{1}{2}\right]\right)$ be 1 in $\left[0, \frac{1}{3}\right]$ and $\varphi_{i}: E \rightarrow E$ be

$$
\varphi_{i}(x)=\mu_{i}(x) P_{i}(x)+\left(1-\mu_{i}(x)\right) x, \quad \mu_{i}(x)=\psi\left(\left|x-q_{i}\right|\right)
$$

Define $f: E \rightarrow E$ by

$$
f=\varphi_{k} \circ \varphi_{k-1} \circ \ldots \circ \varphi_{1} .
$$

4. Construct the image $M=f\left(U_{\delta}(X)\right)$.

The output is the n-dimensional surface $M \subset E$.

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

Some earlier methods for manifold learning

Let $\left\{x_{j}\right\}_{j=1}^{J} \subset \mathbb{R}^{d}$ be points on submanifold $M \subset \mathbb{R}^{d}, d>n$.

- 'Multi Dimensional Scaling' (MDS) finds an embedding of data points into $\mathbb{R}^{m}, n<m<d$ by minimising a cost function

$$
\min _{y_{1}, \ldots, y \in y_{\mathbb{R}^{m}}} \sum_{j, k=1}^{J}\left|\left\|y_{j}-y_{k}\right\|_{\mathbb{R}^{m}}-d_{j k}\right|^{2}, \quad d_{j k}=\left\|x_{j}-x_{k}\right\|_{\mathbb{R}^{d}}
$$

- 'Isomap' makes a graph of the K nearest neighbours and computes graph distances $d_{j k}^{G}$ that approximate distances $d_{M}\left(x_{j}, x_{k}\right)$ along the surface. Then MDS is applied. Note that if there is $F: M \rightarrow \mathbb{R}^{m}$ such that $\left|F(x)-F\left(x^{\prime}\right)\right|=d_{M}\left(x, x^{\prime}\right)$, then the curvature of M is zero.

Figure by Tenenbaum et al., Science 2000

Construction of a manifold from discrete data.

Let $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ be a (discrete) metric space. We want to approximate it by a Riemannian manifold $\left(M^{*}, g^{*}\right)$ so that

- $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ and $\left(M^{*}, d_{g^{*}}\right)$ are almost isometric,
- the curvature and the injectivity radius of M^{*} are bounded.

Note that \mathcal{X} is an "abstract metric space" and not a set of points in \mathbb{R}^{d}, and we want to learn the intrinsic metric of the manifold.

Distance of two metric spaces

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be (compact) metric spaces. Their Gromov-Hausdorff distance is
$d_{G H}(X, Y)=\inf _{Z}\left\{d_{H}(X, Y) ;\left(Z, d_{Z}\right)\right.$ is a metric space, $\left.X \subset Z, Y \subset Z\right\}$.
More practical definition: $d_{G H}(X, Y)$ is the infimum of all $\varepsilon>0$ for which there are ε-dense sequences $\left(x_{j}\right)_{j=1}^{J} \subset X$ and $\left(y_{j}\right)_{j=1}^{J} \subset Y$ such that

$$
\left|d_{X}\left(x_{j}, x_{k}\right)-d_{Y}\left(y_{j}, y_{k}\right)\right| \leq \varepsilon, \quad \text { for all } j, k=1,2 \ldots, J
$$

Example 1: Non-Euclidean metric in data sets

Consider a data set $\mathcal{X}=\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{d}$.
The ISOMAP face data set contains $N=2370$ images of faces with $d=2914$ pixels.

Question: Define $d_{\mathcal{X}}\left(x_{j}, x_{k}\right)$ using Wasserstein distance related to optimal transport. Does $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ approximate a manifold and how this manifold can be constructed?

Example 2: Travel time distances of points

Surface waves produced by earthquakes travel near the boundary of the Earth. The observations of several earthquakes give information on travel times $d_{T}(x, y)$ between the points $x, y \in \mathbb{S}^{2}$.

Question: Can one determine the Riemannian metric associated to surface waves from the travel times with measurement errors?

Figure by Su-Woodward-Dziewonski, 1994

Example 3: An inverse problem for a manifold

Consider a physical $D \subset \mathbb{R}^{3}$ with an unknown wave speed $c(x)$. We can use boundary measurements to construct the distances $d_{g}\left(x_{j}, x_{k}\right)$ in a discrete set $X=\left\{x_{j} \in M: j=1,2, \ldots, N\right\}$ (Belishev-Kurylev 1992, Bingham-Kurylev-L.-Siltanen 2008).

The solution for Problem B gives a construction of a smooth Riemannian manifold from $\left(X, d_{X}\right)$. This Riemannian metric is close to the travel time metric g determined by $c(x)$.

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Ideas of the proofs and applications in geometry
- Learning a manifold from distances with large random noise

Construction of a manifold from discrete data.

Let $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ be a (discrete) metric space. We aim to answer the question if there exists a Riemannian manifold $\left(M^{*}, g^{*}\right)$ that approximates \mathcal{X} so that

- $d_{G H}\left(\left(\mathcal{X}, d_{\mathcal{X}}\right),\left(M^{*}, d_{g^{*}}\right)\right)<\varepsilon$,
- the curvature and the injectivity radius of M^{*} are bounded.

Note that \mathcal{X} is an "abstract metric space" and not a set of points in \mathbb{R}^{d}, and we want to learn the intrinsic metric of the manifold.

A local condition

Let $B_{r}^{X}(x)$ denote the ball of the metric space X and $B_{r}^{\mathbb{R}^{n}}(0)$ denote the ball of \mathbb{R}^{n}.

Definition

Let X be a metric space, $r>\delta>0, n \in \mathbb{Z}_{+}$. We say that X is δ-close to \mathbb{R}^{n} at scale r if, for any $x \in X$,

$$
d_{G H}\left(B_{r}^{X}(x), B_{r}^{\mathbb{R}^{n}}(0)\right)<\delta
$$

Note: A compact smooth n-manifold is $\left(\mathrm{Cr}^{3}\right)$-close \mathbb{R}^{n} at scale r.

A global condition

Definition

Let $X=(X, d)$ be a metric space and $\delta>0$. A δ-chain in X is a sequence $x_{1}, x_{2}, \ldots, x_{N} \in X$ such that $d\left(x_{j}, x_{j+1}\right)<\delta$ for all j.

A sequence $x_{1}, x_{2}, \ldots, x_{N} \in X$ is said to be δ-straight if
$d\left(x_{i}, x_{j}\right)+d\left(x_{j}, x_{k}\right)<d\left(x_{i}, x_{k}\right)+\delta \quad$ for all $1 \leq i<j<k \leq N$.
We say that X is δ-intrinsic if for every pair of points $x, y \in X$ there is a δ-straight δ-chain x_{1}, \ldots, x_{N} with $x_{1}=x$ and $x_{N}=y$.

Manifold learning

Theorem

Let X be a metric space with a bounded diameter, $n \in \mathbb{Z}_{+}, r>0$, and $0<\delta<\delta_{0}(r, n)$. Suppose that X is δ-intrinsic and δ-close to \mathbb{R}^{n} at scale r. Then there exists a compact n-dimensional Riemannian manifold M such that

1. X and M satisfy

$$
d_{G H}(X, M)<C \delta r^{-1} \operatorname{diam}(X) .
$$

2. The sectional curvature $\operatorname{Sec}(M)$ of M satisfies

$$
|\operatorname{Sec}(M)| \leq C \delta r^{-3}
$$

3. The injectivity radius of M is bounded below by $r / 2$.

In particular, if $\delta<C r^{3}$, the constructed manifold M has bounded curvature.

Manifold learning

Theorem

Let X be a metric space with a bounded diameter, $n \in \mathbb{Z}_{+}, r>0$, and $0<\delta<\delta_{0}(r, n)$. Suppose that X is δ-intrinsic and δ-close to \mathbb{R}^{n} at scale r. Then there exists a compact n-dimensional Riemannian manifold M such that

1. X and M satisfy

$$
d_{G H}(X, M)<C \delta r^{-1} \operatorname{diam}(X) .
$$

2. The sectional curvature $\operatorname{Sec}(M)$ of M satisfies

$$
|\operatorname{Sec}(M)| \leq C \delta r^{-3}
$$

3. The injectivity radius of M is bounded below by $r / 2$.

In particular, if $\delta<C r^{3}$, the constructed manifold M has bounded curvature.

Rough idea of the proof of manifold interpolation

Assume that we are given a finite metric space (X, d).
We do the following steps:

1. Select a maximal $\frac{r}{100}$-separated set $X_{0}=\left\{q_{i}\right\}_{i=1}^{J} \subset X$.
2. Choose disjoint balls $D_{i}=B_{r}\left(p_{i}\right) \subset \mathbb{R}^{n}$ for $i=1,2, \ldots, J$ and construct a δ-isometry $f_{i}: B_{r}^{X}\left(q_{i}\right) \rightarrow D_{i}$.
3. For all $q_{i}, q_{j} \in X_{0}$ such that $d\left(q_{i}, q_{j}\right)<r$, find affine transition maps $A_{i j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$, such that

$$
\left|A_{i j}\left(f_{i}(x)\right)-f_{j}(x)\right|<C \delta, \quad \text { for } x \in B_{r}^{X}\left(q_{i}\right) \cap B_{r}^{X}\left(q_{j}\right)
$$

When $i=j$, we define $A_{j j}=l d$.
4. Let $\Phi \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ be 1 near zero, and $\Omega=\bigcup_{i} D_{i}$. Define smooth indicator functions $\psi_{i j}(x)=\Phi\left(A_{i j}(x)-p_{j}\right)$. Define a map $F_{j}: \Omega \rightarrow \mathbb{R}^{n+1}$ as follows: For $x \in D_{i}=B_{r}\left(p_{i}\right)$, put

$$
F_{j}(x)=\left\{\begin{array}{cl}
\left(\psi_{i j}(x) \cdot\left(A_{i j}(x)-p_{j}\right), \psi_{i j}(x)\right), & \text { if } d\left(q_{i}, q_{j}\right)<r \\
0, & \text { otherwise }
\end{array}\right.
$$

5. Denote $E=\mathbb{R}^{m}, m=(n+1) J$ and define

$$
F: \Omega \rightarrow E, \quad F(x)=\left(F_{j}(x)\right)_{j=1}^{J} .
$$

6. Construct the local patches $\Sigma_{i}=F\left(D_{i}\right) \subset E$.
7. Apply algorithm SurfaceInterpolation for the set $\bigcup_{i} \Sigma_{i}$ to construct a surface $M \subset E$.
8. Let P_{M} be the normal projection on M.
9. Construct a metric tensor g on M by pushing forward the Euclidean metric g^{e} on D_{i} in the maps $P_{M} \circ F$ and computing a weighted average of the obtained metric tensors.

The output is the surface $M \subset E$ and the metric g on it.
Next we consider applications of the above theorem in reconstruction of an unknown manifold.

Theorem (Fefferman, Ivanov, Kurylev, L., Narayanan 2015)

 Let $0<\delta<c_{1}(n, K)$ and M be a compact n-dimensional manifold with $|\operatorname{Sec}(M)| \leq K$ and $\operatorname{inj}(M)>2(\delta / K)^{1 / 3}$. Let $\mathcal{X}=\left\{x_{j}\right\}_{j=1}^{N}$ be δ-dense in M and $\widetilde{d}: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}_{+} \cup\{0\}$ satisfy$$
\left|\widetilde{d}(x, y)-d_{M}(x, y)\right| \leq \delta, \quad x, y \in \mathcal{X}
$$

Given the values $\widetilde{d}\left(x_{j}, x_{k}\right), j, k=1, \ldots, N$, one can construct a compact n-dimensional Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that:

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for } x, y \in M^{*}, L=1+C_{n} K^{1 / 3} \delta^{2 / 3}
$$

2. $\left|\operatorname{Sec}\left(M^{*}\right)\right| \leq C_{n} K$.
3. $\operatorname{inj}\left(M^{*}\right) \geq \min \left\{\left(C_{n} K\right)^{-1 / 2},\left(1-C_{n} K^{1 / 3} \delta^{2 / 3}\right) \operatorname{inj}(M)\right\}$.

Outline:

- Classical and geometric Whitney problems
- Surface interpolation
- Riemannian manifolds in inverse problems and other applications
- Manifold interpolation: Construction of a manifold from distances with small errors
- Learning a manifold from distances with large random noise

Random sample points and random errors

Manifolds with bounded geometry:
Let $n \geq 2$ be an integer, $K>0, D>0, i_{0}>0$. Let (M, g) be a compact Riemannian manifold of dimension n such that

$$
\begin{align*}
& \text { i) }\left\|\operatorname{Sec}_{M}\right\|_{L^{\infty}(M)} \leq K, \tag{1}\\
& \text { ii) } \operatorname{diam}(M) \leq D, \\
& \text { iii) } \operatorname{inj}(M) \geq i_{0},
\end{align*}
$$

We consider measurements in randomly sampled points: Let $X_{j}, j=1,2, \ldots, N$ be independently samples from probability distribution μ on M satisfying

$$
0<c_{\min } \leq \frac{d \mu}{d \mathrm{Vol}_{g}} \leq c_{\max }
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Definition

Let $X_{j}, j=1,2, \ldots, N$ be independent, identically distributed
(i.i.d.) random variables having distribution μ.

Let $\sigma>0, \beta>1$ and $\eta_{j k}$ be i.i.d. random variables satisfying

$$
\mathbb{E} \eta_{j k}=0, \quad \mathbb{E}\left(\eta_{j k}^{2}\right)=\sigma^{2}, \quad \mathbb{E} e^{\left|\eta_{j k}\right|}=\beta
$$

In particular, Gaussian noise satisfies these conditions.
We assume that all random variables $\eta_{j k}$ and X_{j} are independent.
We consider noisy measurements

$$
D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}
$$

Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 3, D, K, i_{0}, c_{\min }, c_{\max }, \sigma, \beta>0$ be given. Then there are δ_{0}, C_{0} and C_{1} such that the following holds: Let $\delta \in\left(0, \delta_{0}\right)$,
$\theta \in\left(0, \frac{1}{2}\right)$ and (M, g) be a compact manifold satisfying bounds (1).
Then with a probability $1-\theta, \sigma^{2}$ and the noisy distances
$D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}, j, k \leq N$ of N randomly chosen points, where

$$
N \geq C_{0} \frac{1}{\delta^{3 n}}\left(\log \left(\frac{1}{\theta}\right)+\log \left(\frac{1}{\delta}\right)\right)
$$

determine a Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for all } x, y \in M^{*}
$$

where $L=1+C_{1} \delta$.
2. The sectional curvature $\operatorname{Sec}_{M^{*}}$ of M^{*} satisfies $\left|\operatorname{Sec}_{M^{*}}\right| \leq C_{1} K$.
3. The injectivity radius inj $\left(M^{*}\right)$ of M^{*} is close to $\operatorname{inj}(M)$.

Theorem (Fefferman, Ivanov, L., Narayanan 2019)

Let $n \geq 3, D, K, i_{0}, c_{\min }, c_{\max }, \sigma, \beta>0$ be given. Then there are δ_{0}, C_{0} and C_{1} such that the following holds: Let $\delta \in\left(0, \delta_{0}\right)$,
$\theta \in\left(0, \frac{1}{2}\right)$ and (M, g) be a compact manifold satisfying bounds (1).
Then with a probability $1-\theta, \sigma^{2}$ and the noisy distances
$D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}, j, k \leq N$ of N randomly chosen points, where

$$
N \geq C_{0} \frac{1}{\delta^{3 n}}\left(\log \left(\frac{1}{\theta}\right)+\log \left(\frac{1}{\delta}\right)\right)
$$

determine a Riemannian manifold $\left(M^{*}, g^{*}\right)$ such that

1. There is a diffeomorphism $F: M^{*} \rightarrow M$ satisfying

$$
\frac{1}{L} \leq \frac{d_{M}(F(x), F(y))}{d_{M^{*}}(x, y)} \leq L, \quad \text { for all } x, y \in M^{*}
$$

where $L=1+C_{1} \delta$.
2. The sectional curvature $\operatorname{Sec}_{M^{*}}$ of M^{*} satisfies $\left|\operatorname{Sec}_{M^{*}}\right| \leq C_{1} K$.
3. The injectivity radius inj $\left(M^{*}\right)$ of M^{*} is close to $\operatorname{inj}(M)$.

For $z \in M$, let $r_{z}: M \rightarrow \mathbb{R}$ be the distance function from z,

$$
r_{z}(x)=d_{M}(z, x), \quad x \in M
$$

For $y, z \in M$, we consider the "rough distance function"

$$
\kappa(y, z)=\left\|r_{y}-r_{z}\right\|_{L^{2}(M)}^{2}=\int_{M}\left|d_{M}(y, x)-d_{M}(z, x)\right|^{2} d \mu(x)
$$

Lemma

There is a constant $c_{0} \in(0,1)$ such that

$$
c_{0}^{2} d_{M}(y, z)^{2} \leq\left\|r_{y}-r_{z}\right\|_{L^{2}(M, d \mu)}^{2} \leq d_{M}(y, z)^{2}, \quad y, z \in M .
$$

That is, the map $R: z \mapsto r_{z}$ is a bi-Lipschitz embedding $R: M \rightarrow R(M) \subset L^{2}(M)$.

Lemma (Hoeffding's inequality)
Let Z_{1}, \ldots, Z_{N} be N independent, identically distributed copies of the random variable Z whose range is $[0,1]$. Then, for $\varepsilon>0$, we have

$$
\mathbb{P}\left[\left|\frac{1}{N}\left(\sum_{j=1}^{N} Z_{j}\right)-\mathbb{E} Z\right| \leq \varepsilon\right] \geq 1-2 \exp \left(-2 N \varepsilon^{2}\right)
$$

We consider three sets $S_{1}, S_{2}, S_{3} \subset\left\{X_{j}\right\}$, where $N_{i}=\# S_{i}$ satisfy $N_{1}>N_{2}>N_{3}$. We call $S_{1}=\left\{X_{1}, \ldots, X_{N_{1}}\right\}$ the densest net, S_{2} the medium dense net and S_{3} the coarse net.

We give an algorithm to construct $\left(M^{*}, g^{*}\right)$ from noisy data.
Step 1: For $X_{j}, X_{k} \in S_{2}$ are in the "medium dense net", we compute

$$
\kappa_{a p p}\left(X_{j}, X_{k}\right)=\frac{1}{N_{1}} \sum_{\ell=1}^{N_{1}}\left|D_{j \ell}-D_{k \ell}\right|^{2}-2 \sigma^{2}
$$

where we take a sum over the "densest net" S_{1}.

Denote $\kappa\left(X_{j}, X_{k}\right)=\left\|r X_{j}-r_{X_{k}}\right\|_{L^{2}(M)}^{2}$. A simple calculation shows

$$
\mathbb{E}\left(\left|D_{j \ell}-D_{k \ell}\right|^{2} \mid X_{j}, X_{k}\right)=\left\|r_{X_{j}}-r_{X_{k}}\right\|_{L^{2}(M)}^{2}+2 \sigma^{2}
$$

We recall that for $X_{j}, X_{k} \in S_{2}$,

$$
\kappa_{\text {app }}\left(X_{j}, X_{k}\right)=\frac{1}{N_{1}} \sum_{\ell=1}^{N_{1}}\left|D_{j \ell}-D_{k \ell}\right|^{2}-2 \sigma^{2}
$$

Thus Hoeffding's inequality yields the following:
Lemma
Let $L>D+1$ and $\varepsilon>0$. If $\left|\eta_{j k}\right|<L$ almost surely, then
$\mathbb{P}\left[\left|\kappa_{\text {app }}\left(X_{j}, X_{k}\right)-\kappa\left(X_{j}, X_{k}\right)\right| \leq \varepsilon\right] \geq 1-2 \exp \left(-\frac{1}{8} N_{1} L^{-4} \varepsilon^{2}\right)$.

Recall that function $\kappa(y, z)=\left\|r_{y}-r_{z}\right\|_{L^{2}(M)}^{2} \approx \kappa_{a p p}(y, z)$ is a rough distance function:

$$
c_{0}^{2} d_{M}(y, z)^{2} \leq \kappa(y, z) \leq d_{M}(y, z)^{2} .
$$

Let $W(y, \rho)$ and $W_{\text {app }}(y, \rho)$ be the sets

$$
\begin{aligned}
W(y, \rho) & =\left\{z \in M: \kappa(y, z)<\rho^{2}\right\} \\
W_{a p p}(y, \rho) & =\left\{z \in M: \kappa_{\text {app }}(y, z)<\rho^{2}\right\} .
\end{aligned}
$$

We have $B_{M}\left(y, \frac{1}{c_{0}} \rho\right) \subset W(y, \rho) \subset B_{M}(y, \rho)$.

For $y_{1}, y_{2} \in M$, we define the averaged distances

$$
d_{\rho}\left(y_{1}, y_{2}\right)=\frac{1}{\mu\left(W\left(y_{1}, \rho\right)\right)} \int_{W\left(y_{1}, \rho\right)} d_{M}\left(z, y_{2}\right) d \mu(z)
$$

Step 2: For $X_{j}, X_{j^{\prime}} \in S_{3}$, where S_{3} is the coarse net, compute

$$
d_{\rho}^{a p p}\left(X_{j}, X_{j^{\prime}}\right)=\frac{1}{\#\left(S_{2} \cap W_{a p p}\left(X_{j}, \rho\right)\right)} \sum_{X_{k} \in S_{2} \cap W_{a p p}\left(X_{j}, \rho\right)} D_{k j^{\prime}}
$$

There is $\delta_{1}=\delta_{1}(\rho, \theta)$ such that

$$
\mathbb{P}\left[\forall X_{j}, X_{j^{\prime}} \in S_{3}:\left|d_{\rho}^{a p p}\left(X_{j}, X_{j^{\prime}}\right)-d_{M}\left(X_{j}, X_{j^{\prime}}\right)\right|<\delta_{1}\right] \geq 1-\theta
$$

Summarizing, for points $S_{3}=\left\{y_{1}, y_{2}, \ldots, y_{N_{3}}\right\}$ we find $d_{\rho}^{a p p}\left(y_{j}, y_{j^{\prime}}\right)$ such that

$$
\left|d_{\rho}^{a p p}\left(y_{j}, y_{j^{\prime}}\right)-d_{M}\left(y_{j}, y_{j^{\prime}}\right)\right|<\delta_{1}
$$

with a large probability.
Step 3: Using the deterministic results with small errors we find a smooth manifold $\left(M^{*}, g^{*}\right)$ using the net S_{3} and the approximate distance $d_{\rho}^{a p p}\left(y_{1}, y_{2}\right)$ of $y_{1}, y_{2} \in S_{3}$.

Generalization with missing data

Recall that $D_{j k}=d_{M}\left(X_{j}, X_{k}\right)+\eta_{j k}$.
We can assume that we are given

$$
D_{j k}^{(\text {partial data) }}=\left\{\begin{array}{cl}
D_{j k} & \text { if } Y_{j k}=1, \\
\text { 'missing' } & \text { if } Y_{j k}=0,
\end{array}\right.
$$

where $Y_{j k} \in\{0,1\}$ are independent random variables,

$$
\mathbb{P}\left(Y_{j k}=1 \mid X_{j}, X_{k}\right)=\Phi\left(X_{j}, X_{k}\right)
$$

and $\Phi: M \times M \rightarrow \mathbb{R}$ is some (unknown) function such that there is a smooth non-increasing function $h:[0, \infty) \rightarrow[0,1]$ so that

$$
c_{1} h\left(d_{M}(x, y)\right) \leq \Phi(x, y) \leq c_{2} h\left(d_{M}(x, y)\right)
$$

Thank you for your attention!

